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The automation of pre-launch diagnostics for launch vehicles offers three potential
benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground
Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and
diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground
hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center
(KSC) and while it was on the launch pad. The prototype combines three existing tools. The
first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool
from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE
(Spacecraft Health Inference Engine), is a rule-based expert system that was developed at
the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and
mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool,
I MS (Inductive Monitoring System), is an anomaly detection tool that was developed at
NASA Ames Research Center. The three tools were integrated and deployed to KSC, where
they were interfaced with live data. This paper describes how the prototype performed
during the period before the launch, including accuracy and computer resource usage. The
paper concludes with some of the lessons that we learned from the experience of developing
and deploying the prototype.

I.	 Definitions

Many of the words, phrases, and acronyms that are used in the field of Integrated Systems Health Management
(ISHM) are ill-defined, so we begin with some definitions. Anomaly detection is detecting that new data is different
from what has been seen before. An anomaly may or may not be a fault. Fault detection is detecting that something
has failed, resulting in a loss of function. Fault isolation is deternuning the location of the fault. Diagnostics is
determining the specific failure mode. All of these methods take as input the steam of sensor values and conunands,
and output assessments of the system's health. The Ares I-X Ground Diagnostic Prototype performs anomaly
detection, fault detection, fault isolation, and diagnostics.
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11.	 Introduction

T
HE automation of pre-launch dia gnostics for launch vehicles offers
three potential benefits. First, it offers the potential to improve safety

by detecting faults that might otherwise have been nussed so that they can
be corrected before launch. Second, it offers the potential to reduce launch
delays by more quickly diagnosing the cause of anomalies that occur
during pre-launch processing . Reducing launch delays will be critical to
the success of NASA's planned future missions that require in-orbit
rendezvous. Third, it offers the potential to reduce costs, both by reducing
launch delays and by reducing the number of people needed to monitor the
pre-launch process.

Ares I is the launch vehicle that NASA is currently developing to bring
the Orion capsule and its crew of four astronauts to low-earth orbit on their
way to the moon. Ares I-X' was the first uninhabited test flight of Ares 1. It
launched on October 28, 2009 (see Figure 1). The Ares I-X Ground
Diagnostic Prototype (GDP) is a prototype ground diagnostic system that
provided anomaly detection, fault detection, fault isolation, and diagnostics
for the Ares I-X first-stage Thrust Vector Control (TVC) and for the
associated ground Hydraulic Support System (HSS) while the vehicle was
in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC)
and while it was on the launch pad. The TVC is used to steer the vehicle
during ascent by moving the nozzle of the first-stage solid rocket booster.
The HSS provides hydraulic pressure for testing the TVC before launch.
GDP is intended to serve as a prototype of a future operational ground
diagnostic system for Ares I or other future launch vehicles.

The prototype combines three existing diagnostic tools. The first tool, Figure 1. Ares I-X launch. Ares /-X
TEAMS (Testability Engineering and Maintenance System), is a model- launched from Kennedy Space Center
based tool that is a commercial product from Qualtech Systems Inc. on October 28, 2009.
(http://teamgsi.com). It uses a qualitative model of failure propagation to
perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC in order to use it for
diagnostics, and developed a TEAMS model of the ground hydraulics. The second tool, SHINE (Spacecraft Health
Inference Engine), is a rule-based
expert system that was developed at the	 Vehicle sensor data &	 Ground Support Equipment
NASA Jet Propulsion Laboratory'. We 	 commands	 sensor data & commands

developed SHINE rules for fault
detection and mode identification. The
prototype uses the outputs of SHINE as 	 Data server

inputs to TEAMS. The third tool, IMS
(Inductive Monitoring System) 3 , is an	 Sensor data & commands
anomaly detection tool that was
developed at NASA Ames Research
Center and is currently being used to 	

;1dentificaticn
	 Fault Detection

monitor	 three	 systems	 on	 the
International Space Station. IMS 	 Pass /fail test results
automatically "learns" a model ofAnomalyIsolation
historical nominal data in the formof a 	 Detectiongnostics
set of clusters and signals an alarm

Anomaly scores 	 Diagnoseswhen new data fails to snatch this
model. IMS offers the potential to
detect faults that have not been
modeled. The three tools were

	
[Snomaly	 Diagnosis

 Display	 display
integrated and deployed to Hangar AE
at KSC, where they were interfaced Figure 2. Ares I-X GDP Architecture. The architecture combines
with live data from the Ares I-X vehicle anomaly detection, fault detection, and diagnosis for the vehicle and the
and from the ground hydraulics. The ground support equipment.
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outputs of the tools were displayed on a console in Hangar AE, which is one of the locations from which the Ares I-
X launch was monitored. The architecture of the prototype is shown in Figure 2.

In a previous publication 4, we discussed how we selected the three tools based primarily on their ability to be
certified for human spaceflight, and described our plans for the prototype. This paper describes how the prototype
perforned during the period before the launch. Section III describes the data that was used to test the prototype,
including the simulated failures that were inserted into historical Shuttle data. Section IV describes how we used
TEAMS and SHINE for fault detection and fault isolation, and includes a summary of the results from those tools.
Section V describes how we used IMS for anomaly detection, and includes a summary of the results from that tool.
Section VI describes the graphical tool that was used to display the outputs of the prototype. Section VII summarizes
the computational performance of the prototype. The prototype was not certified. but Section VIII presents a brief
summary of how we considered the need for certification in the design of the prototype and how we would propose
to get it certified if it were deployed as an operational system. The paper concludes with some of the lessons than we
learned from the experience of developing and deploying the prototype_

I 11. Data Used for Testing the Prototype
During the development and testing of Ares I-X GDP, Ares I-X data was not yet available. We therefore used

historical Space Shuttle data to test the entire prototype. The Space Shuttle Solid Rocket Booster (SRB) TVC is
virtually identical to the Ares I-X first-sta ge TVC, so the SRB TVC data was expected to be very similar to the Ares
I-X TVC data. Similarly; the ground hydraulic system used with the SRB TVC is virtually identical to the ground
hydraulic system used with the Ares I-X TVC. These expectations held up modestly well after our post-flight
analysis, in consideration of all the tools that were deployed to support failure and anomaly detection; as will be
discussed in subsequent sections. The differences that we found in the data were caused by differences in operations
between Shuttle and Ares I-X, rather than by differences in the TVC or HSS hardware.

The SRB TVC and the associated ground hydraulic system have had very few failures. We thus had available to
us an abundance of nominal data, but very little failure data. We therefore decided to develop a set of failure
simulations that could be used to test the ability of the prototype to detect and diagnose failures. We inserted
simulated failures into the historical Shuttle data, and used the resulting data sets to test the prototype before the
Ares I-X launch. We developed simulations of the following four failure modes:

• FSM (Fuel Supply Module) pressure drop due to N 2H4 (Hydrazine) leak
• Hydraulic pumping unit over-temperature failure
• Hydraulic fluid reservoir level drop due to hydraulic fluid leak
• Actuator stuck during actuator positioning test

For the FSM failure, we developed a physics-based simulation. For the other three failure modes, we did not have
sufficient information available to develop physics-based simulations, so we used simple linear approximations.
More details of the simulated failures can be found in Ref. 5.

After the Ares I-X vehicle was assembled and powered up in the Vehicle Assembly Building (VAB), we began
testing the prototype using live data from the vehicle. This testing continued until launch.

IV. Fault Detection, Fault Isolation, and Diagnostics
The software tool that was chosen to provide fault isolation and diagnostics for GDP is called TEAMS. TEAMS

is a software package for performin g model-based diagnostics based on the system design, component definitions,
inputs, outputs, connectivity, signal flow and hierarchy. The TEAMS suite of tools includes TEAMS Designer, a
graphical tool that is used to build TEAMS models, and TEAMS-RT, a real-time fault isolation and diagnosis engine
that uses the TEAMS models. We used TEAMS Desi gner to build TEAMS models of the TVC and HSS, and
deployed TEAMS-RT to Hangar AE.

TEAMS-RT requires as its inputs a set of test results and the current system mode. Each test result has a "pass"
or "fail' value, and typically represents the result of a test that is performed on the TVC. Most of the tests involve
comparing a sensor value with a threshold. GDP uses a combination of SHINE rules and C code to compute the test
results and the system mode. This "wrapper" code performs fault detection and mode identification. The diagnoses
produced by TEAMS-RT label all of the components in the model as "good" (definitely not failed), "suspect"
(possibly failed), or "bad" (definitely failed).

TEAMS models are hierarchical it is possible to "zoom in" on any of the modules displayed in TEAMS
Designer to see the components within them. At the lowest level, the failure modes and test points are modeled.
(The test results described above are input to the model at the test points.) We built separate TEAMS models of the
TVC and the HSS, and then integrated them into a single model by using a simple top-level model. The failure
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modes and components were modeled based on information provided in the Failure Modes and Effects Analysis for
the vehicle, along with schematics, diagrams, users' manuals, and knowledge from TVC engineers and systems
engineers. The integrated model has 655 components, 893 failure modes, and 263 tests. The tests use data from 281
measurements.

Prior to the Ares I-X launch, we tested the TEAMS model and the wrapper code using historical Shuttle data
from seven flights, into which we inserted simulated failures. This testing revealed some bugs in the SHINE rules. In
some cases, we had initially made some assumptions about the TVC testing procedures that turned out to be false for
at least one of the seven Shuttle fli ghts. Other bugs were simply coding errors. After fixin g all of the bugs, we were
able to rum the prototype on the data from all seven Shuttle flights with no false alarms, and with all of the simulated
failures correctly detected.

We obtained the first Ares I-X data shortly after Ares I-X had its initial power-up in the VAB, approximately six
weeks before the launch. When we tested the prototype on this Ares I-X data, it produced a small number of false
alarms, caused by differences in the test procedures between Shuttle and Ares I-X. Most of these false alarms were
caused by incorrect mode identification. For example, some tests were performed in a different order for Ares I-X
than they were for Shuttle. Prior to the launch, we fixed the SHINE rules for mode identification. Shortly before the
launch, the prototype had a small number of false alarms caused by data dropouts. We had expected data dropouts
during ascent, but had not expected data dropouts before launch. After the launch, we modified the wrapper code to
detect data dropouts. After making this modification, we were able to nm the prototype on the recorded data from
the launch without any false alarms. Ares I-X did not have any failures in the systems we modeled, so the prototype
had no correct detections and no missed detections.

V. Anomaly Detection
We ran IMS in parallel with the TEAMS/SHINE combination. We expected that TEAMS and SHINE would

detect all of the known failure modes that we modeled, while IMS would have the potential to detect unknown
failure modes and anomalies that are not yet failures. IMS has been proven as a mature tool by supporting various
NASA Johnson Space Center (JSC) Shuttle and International Space Station (ISS) operations for four years as well as
being licensed commercially for three years. It is currently running on a console at JSC Mission Control Center to
monitor live data from the ISS Control Moment Gyroscopes, Early External Thermal Control System, and Rate
Gyroscopic Assembly, and has been certified as Class C software for those three systems.

The tool works under the principle of a one-class modeling algorithm by building a model of the nominal
historical data on which it is trained. Because IMS only models the nominal data, and does not model any failure
modes, it can potentially detect unknown failure modes. The model takes the form of a knowledge base (KB) of
clusters. Once the KB has been learned, unseen data points are evaluated against the KB and assigned anomaly
scores based on how different the data points are from the training data. If a new point falls within an existing
cluster, then it is assigned an IMS score of zero. If it does not fall within an existing cluster, then the distance to the
nearest cluster is used as the IMS score.	 Max lntarpvsAUG

IMS also calculates a contributing
—Mean

score	 for	 each	 measurement,	
0.9	 ^^	 —Max

representing each measurement' s 	 —Min

contribution to the overall IMS score. 	 a 6	 M- 0.13-

When an anomalous period of the 	 v.,
testing	 data	 is	 localized,	 these
contributing IMS scores can be used to 	 a.6

help diagnose the issue. 	 o.s

Prior to the Ares I-X launch, we
trained IMS on historical Space Shuttle 	 °'4

data, and tested it using  historical	 °.s

Shuttle data into which we had inserted
simulated failures. During the Ares I-X 	 02
pre-launch period, IMS processed live	 0.1

Ares I-X data, using the knowledge
base that was the result of training IMS	 0 04 	 0. 06	 0.08	 a.1	 a.12	 0 .14	 0.16
on historical	 Shuttle	 data. V The	 Max Lnterp 4alue

remainder of this section describes the Figure 3. AUC as a function of IMS Parameter Max Interp for
selection of measurements for use with Shuttle data from the VAB. The red dot indicates the optimal value.
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IMS, the training  and testing procedures
used, and the results obtained both on
Shuttle data and on Ares I-X data. The
section concludes with a summary of the
results.

Failures 1a, 2, & 3
STS-107, &120

Max I nterp: 0.13

- AUC: 0.56693

A.	 Training and Testing Procedures
0.9

For the	 purpose	 of training and 0 a

testing IMS, we used historical Space
Shuttle	 data	 into	 which we	 inserted 0 7

simulated failures. Although the main
purpose of using IMS in GDP is to rr 06
detect unknown failures, we tested it by
using simulations of known failures. m U5

IMS has a number of tunable input no
parameters. One key parameter that was 0 04

very	 important	 to	 tune	 was	 the
maximum	 interpolation	 (max	 interp)

0.3

parameter. This parameter governs the
threshold	 in	 the	 learning	 phase	 that

o.z

determines if a new data point should be 0,

placed in the current cluster or used to

generate a new cluster.	 The parameterb	 0

directly Influences the number of	 0	
01	 az	 03	 04	 0.7	 0.0	 09	 1

clusters created in the learning phase 	 False Positive Rate

and therefore has a major influence in Figure4. ROC Curve for Shuttle data from the VAB. This ROC
the final anomaly score calculated by curve was generated using the optimal max interp value from Figure 3.
IMS. As the max interp value increases
the total number of clusters formed becomes smaller.

To determine the optimal max interp value and corresponding number of clusters a set of cross validation nuns
was performed on a set of Shuttle VAB and launch pad data; using the Area Linder the ROC (Receiver Operating
Characteristic) curve (AUC) as the governin g metric for optimization. Cross validation is a technique for estimating
the accuracy of a machine learning 	 V
algorithm, by training and testing the 	 Failures 1 & 2

algorithm multiple times, each time	 STS-127 &128
using different subsets of the available	 Max Interp: 0.11
data for training and testing, and then 1
averaging the results. The ROC curve 0.9
is a plot of true positive rate against
false positive rate, and can be used to 0.8

help make the tradeoff between these m 0 7
two rates.	 The AUC	 is loosely a
measure of accuracy over all possible

rr

tradeoffs between true positive rate
and false positive rate. More formally,
the AUC represents the probability 0.4
that a randomly chosen failure data
point is more suspect than a randomly

0.9

chosen nominal data point.' An AUC 0.2

of one thus indicates perfect ranking of
these	 two	 randomly	 selected	 data

0.1

ponts.

B. Results on Shuttle Simulations
Once the cross validation nuns

were complete, the areas under the

0^
0
	

01	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.0	 0.9

False Positive Rate

Figure 5. ROC Curve for Shuttle data from the pad. IMS had nearly
perfect accuracy on the Shuttle pad data.
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I-X than they did on Shuttle.
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ROC curves were calculated. Figure 3
shows the maximulm, minimum, and
average AUC over the three-fold cross
validations and three fault scenarios for
each max interp value. The optimal
max interp value that was chosen is
marked in the plots. The ROC curve
with the optimal max interp value of
0.13 can be seen in Figure 4. The AUC
is only 0.86893, because IMS had
difficulty detecting one of the three
simulated failures that were used. The
increase in IMS score resultin g from
this simulated failure was not much
larger than the nominal variation in the
IMS score, so it was not possible to
select a threshold that would allow
IMS to detect all of the simulated
failures without having any false
alarms. Some failure modes are easily
detected using IMS' distance-based
approach with clustering, while others
are not. 'When IMS is used in parallel
with TEAMS-RT, TEAMS-RT should
detect all of the failures that are
modeled in the TEAMS model, the
advantage of using IMS in addition is
that it has the potential to detect
failures that were not modeled, as well
as anomalies that are not yet failures.
For the pad, IMS performed much
better. After optimizing the value of
max interp, the ROC curve was
generated and can be seen in Fi gure 5.
Here the AUC is 0.99919, indicating
that IMS does an excellent job of
detecting the two simulated failure
modes at the pad.

C. Results on Ares I-X
Once the optimal max interp parameter was determined from the Shuttle data, IMS was trained on 33

measurements using Shuttle data from seven flights. After building the KB, the Ares I-X data was evaluated against
it. The resulting IMS scores for the VAB are shown in Figure 6. With the initial set of 33 measurements, 3 periods
of anomalous behavior were flagged by IMS; they are labeled as three "False Alarms" in Figure 6. We performed
an analysis of each "false alarm", here we present the analysis of False Alarm 1 as an example. We determined that
False Alarm 1 was primarily caused by two measurements, the TVC rock and tilt actuator positions. The
contributing IMS scores for these two measurements are plotted in Figure 7.

False Alarm 1 was caused by a difference between the Space Shuttle and Ares I-X. In recent years, the TVC
actuator tests performed in the VAB have all been "pinned" tests, meaning that the actuator is physically pinned to
the nozzle during testing, so that the nozzle moves during the test. The first TVC actuator position test performed in
the VAB for Ares I-X was an "unpinned" test, meaning that the actuator was detached from the nozzle, and the
nozzle did not move during the test. Because the actuator was unpinned, it was able to move through a larger range
of motion that is not possible during pinned testing. IMS therefore saw rock and tilt position values that it had never
seen in the Shuttle data, which it flagged as anomalies. These anomalies are "false alarms" in the sense that they are
not failures, but they do illustrate the ability of IMS to detect new data that is different from what it has seen before.
We performed a similar analysis for the launch pad, where there were fewer anomalies identified by IMS. Like the
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anomalies detected at the VAB, the
anomalies detected at the launch pad
were caused by operational differences
between Shuttle and Ares I-X.

D. Summary of I MS results
The experiments that we ran before

the Ares I-X launch using historical
Space Shuttle data with simulated
failures demonstrated that IMS is able
to detect most of the simulated failures,
but not all of them. In particular, it had
difficulty detecting one of the
simulated failure modes in the VAB.
That is not surprising. IMS is not
trained to detect specific failure modes;
it detects data that is anomalous Figure 8. GDP Java Display screen shot. The schematic has been
according to its cluster-based model. blurred to protect confidentiality.
We expect that many known and
unknown failure modes will be detected as anomalies by IMS, but it is not guaranteed to detect all possible failure
modes. The advantage of using IMS together with a model-based diagnosis system such as TEAMS is that it adds
the potential to detect unknown failure modes and to detect precursors of failures.

The results of running IMS on Ares I-X data, using a KB that was trained on historical Space Shuttle data,
confirm our hypothesis that the Ares I-X TVC data is reasonably similar to the Space Shuttle SRB TVC data. Most
of the time, IMS produced small anomaly scores when run on the Ares I-X data. IMS did detect some "anomalies"
in the Ares I-X data. These anomalies were "false alarms" in the sense that they were not failures but rather caused
by operations performed differently for Ares I-X versus Shuttle; hence, they illustrate the ability of IMS to detect
new data that is different from what has been seen in the past.

VI. Java Display
Java Display is an application that is used to display in real time the following information:
1. An interactive schematic of the HSS and TVC subsystems
2. Values for sensors present in the HSS and TVC subsystems
3. Outcome of tests performed by the wrapper code (SHINE)
4. Diagnostic results of TEAMS at both the component and failure levels
5. A tally of suspect and bad components both at the component and failure levels
6. The IMS score
A screen shot of the Java Display is shown in Figure 8.
The two scrollable text areas on the right hand side display information pertaining to TEAMS diagnoses and

SHINE wrapper code test results. On the top right hand corner of the display are fields that display the IMS score
and the current time. A large part of the Java Display is dedicated to a schematic representation of the HSS and TVC
subsystems. The schematic representation is hierarchical and the user is provided with the ability to click on a
particular subsystem to view details at a component level. The subsystem schematics also display in real time the
associated sensor values. Each component of the schematic is colored with an outline depending on the outcome of
the diagnosis from TEAMS. In particular, good, suspect and bad components are colored green, yellow and red
respectively.

VII. Computational Performance of the Prototype
The prototype performed very well from a computational perspective. During development and testing, we ran

the prototype on a Dell Precision M4400 laptop with an Intel Core 2 Quad Q9300 CPU running at 2.53 GHz and 4
GB of DRAM, running Windows XP 32-bit. Table 1 shows the memory and CPU usage of each of the processes
within the prototype, when running on the laptop with historical Space Shuttle data and a simulated fault
("Hydraulic pump over-temperature failure") fed into it at simulated real-time (25 Hz). The CPU usage numbers
indicate what percentage of the quad-core CPU was used. So, for example, a process that used all of the CPU time
on one core would be listed as 2.5%.
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Table 1: GDP memory and CPU usage

Process CPU DRAM
TEAMS (includes TEAMS-RT. the SHINE rules, the C test logic, and the data
interface code) g% 12 MB

IMS (including its data interface code) 1% 11 MB
Java display (including JVM) 1% 29 MB
Data playback software 18% 56 MB
Plotting tool 1% 12 MB
Windows XP Operating System 5% 1 410 MB
Total 34% 1 530 MB

In sunnnary, the prototype could be nun on a sin gle laptop PC using only a small fraction of the available CPU
and memory. It could have easily nun on a PC with half as many cores and half as much memory. It used a
substantial size model (with 893 failure modes), and ran at 25 Hz. We expect that future NASA ground diagnostic
applications will receive data at a much lower rate (possibly 1 Hz), but will model dozens of systems (compared
with the two systems modeled in our prototype).

VI11. Verification, Validation, and Certification

Ares I-X GDP is a prototype. It was not certified, and as such its outputs cannot be used to make operational
decisions. The team did, however, seek to develop the tool in such a way that it could be certified. The three tools
that were integrated (TEAMS-RT, IMS, and SHINE) were selected based in large part on their potential to be
certified. These three tools were judged to be easier to certify than competing tools because of their past usage in
relevant applications and because of their relative simplicity. Decisions re garding how the vehicle and ground
models would be integrated were also made based in part on ease of certification. The team wrote a draft verification
and validation plan that describes how we would have verified, validated, and certified the prototype if it had been
deployed as operational software.

In lieu of a formal verification and validation process, the team performed informal testing of the prototype and
its components. Much of testing used historical Shuttle data into which we inserted simulated failures. In addition,
the team performed testing of the interface code by running large quantities of historical Shuttle data through the
different pieces of interface code and verifying that the data that came out of each interface matched the data that
went into each interface. Before deploying the prototype to Hangar AE at KSC, the team performed integrated
testing of the entire prototype (including TEAMS-RT, SHINE, IMS, and the Java display) using historical data from
several Shuttle flights. Shortly after the initial power-up of Ares I-X in the VAB, the prototype was tested using
recorded Ares I-X data from the initial power-up. Finally, after the prototype was installed in Hangar AE, it was
tested using live Ares I-X data from the VAR

I X. Lessons Learned

We learned many lessons from our experience of developing and deploying the prototype. We expect that these
lessons will be useful to future NASA efforts to build automated diagnostic systems, and may also be useful to
people beyond NASA. The most important lessons are sununarized in this section.

A. Need for the system to provide system mode and event information
TEA MS-RT requires mode and event information as part of its inputs (since certain failure modes can only occur

in certain system modes). The system modes that we needed were the major system modes of the vehicle,
specifically VAB or pad (and were easy to infer). The events and subevents were generally indications of what test
was being perforned or what step within a test was being performed. These were often more difficult to infer. If the
system gets into the wrong mode or event, it is unlikely to ever recover automatically. When GDP got into the
wrong mode or event, we stopped the software, manually set the mode and event, and then restarted it.

The Space Shuttle and Ares I-X both provided us with inadequate system mode and event information. Because
of that; we needed to develop complex SHINE rules to infer the system mode and events from the sensor data and
the command stream. That caused five problems:

1) The development of these SHINE rules was very labor intensive, which resulted in increased costs.
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2) The complexity of these SHINE rules increased the risk that an error in the SHINE rules would result in a
false alarm. (And in fact, we did have false alarms caused by errors in these SHINE rules during the Ares I-
X pre-launch period. We have since fixed all of the errors of which we are aware.)

3) We faced the risk that if any of the data on which these SHINE rules depended was missing or incorrect, the
prototype would infer the system mode or event incorrectly, resultin g in false alarms.

4) Certain failure modes could be mistakenly interpreted as mode changes, resulting in both missed detections
and false alarms. For example, suppose an event that needs to be detected is a valve being closed manually
by a person turning a knob. Suppose that the SHINE rules use a pressure sensor downstream of the valve to
detect when the valve has been closed. If there is a system failure that results in a decrease in pressure, such
as a leak, then the SHINE rules will mistakenly conclude that the valve has been closed.

5) There were some events that we deterlvned could not be detected using the available sensor data and
command stream. We therefore had to remove from our scope the failure modes that depended on these
events.

We believe it is very important for future launch vehicles, such as Ares I, to transmit system mode and event
information to the diagnostic software.

B. Cost of developing wrapper code
In addition to developing the TEAMS models and the IMS KBs, the GDP team also needed to develop "wrapper

code." The wrapper code consists of
1) The interface code that gets live data and feeds it to TEAMS-RT, the SHINE rules, and IMS
2) The system mode and event identification code
3) The "pass/fail' test logic.
The cost of developing the "wrapper" code was higher than we had expected it to be. We estimate that the cost

of developing the wrapper code was comparable to the cost of developin g the TEAMS models. We expect that the
relative cost of developing wrapper code will be lower in the future, for two reasons:

1) We hope that future systems will provide better mode and event information, reducing the cost of developing
system mode and event identification code (see Lesson A).

2) A significant part of the cost of developing the wrapper code was the cost of developing the interface code.
This interface code is not specific to the systems we modeled. Since we only modeled two systems (TVC and
HSS), we were only able to amortize this cost over these two systems. We expect that future diagnostic
systems will model more systems, and will therefore be able to amortize the cost of the interface code over
more systems.

C. Utility of using rule-based systems for wrapper code
The use of SHINE in development of the wrapper code had several upsides but also many downsides. Once the

basic syntax of coding in SHINE was understood, the SHINE framework allowed for very fast development of rules
for event mode detection. After the rules were compiled into C code, the forward-chaining aspect of SHINE greatly
simplified what would otherwise have been a complicated series of nested-if statements. Unfortunately there were a
number of problems as well that may have been avoided if SHINE had not been used, or if it had been used in a
more limited context. The biggest downside turned out to be the difficulty of debugging the SHINE rules. This could
have been improved upon in a number of ways:

1) Begin testing SHINE rules on smaller datasets.
2) Break the SHINE code into smaller, more manageable "chunks".
3) An Integrated Development Environment (IDE) for SHINE could potentially have helped to debug the rules

prior to testing on real data. It could have enhanced the visibility of what rules are associated and triggered
by certain variables, and also helped to spot potential "infinite loops".

4) Move all TEAMS tests outside of SHINE. While SHINE was fully capable of evaluating TEAMS test logic,
most of these tests were more easily coded and managed using table lookups.

Overall. SHINE proved to be a useful but cumbersome tool. If future work were to be done in this area, SHINE
could certainly help but it is recommended to be used in some combination with straightforward C/C++
progratmning to minimize complexity. In general, the things that can easily be done in C or C++, such as table
lookups for threshold values, should be done in C or C++. SHINE rules should only be used for tasks that naturally
fit the rule-based paradigm, such as some of the more complex event identification rules.
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D. TEAMS modeling lessons learned
The process of modeling the TVC and HSS in TEAMS and integrating the two models has resulted in several

lessons learned. First, our experience highlights the need for a comprehensive Interface Control Document (ICD)
for each subsystem that is modeled in TEAMS-Designer. Without an ICD that is agreed upon prior to the start of
the modeling tasks, the model designer will likely spend many hours modifying the models to allow the proper
propagation of information between interacting subsystems.

Second, the testability analysis of the individual models revealed the disparity between the usefulness of the fault
isolation for different types of subsystems. There is better fault isolation in the TVC model than the HSS as a result
of how the subsystems have been designed and are operated. (Flight systems generally have more instrumentation
than ground systems, resulting in better fault isolation.) In the future, criteria related to the degree of automation in
the system along with instrumentation placement may aid in deciding which subsystems should be modeled for the
greatest benefit to an automated fault detection and isolation application.

Finally, the model inte gration process between the TVC and HSS demonstrated the need for a common approach
regarding the use of functions and test points. There are several strategies for naming and usin g functions in the
context of local and global failure propagation; bidirectional flow, switches, and function mapping. A set of
modeling conventions for TEAMS has been developed which addresses common look and feel considerations for
the model, but the conventions have so far left function naming and usage to the discretion of the modeler. In the
future, a standard convention for the usage of functions and test points should be developed, and all ground and
vehicle models intended to be used in an integrated fashion to perform fault isolation should be required to follow
the new convention.

E. Appropriate roles of model-based diagnosis and anomaly detection
Each tool should be leveraged to promote its strengths rather than re-adapting the tool to solve a problem that is

outside of its domain of relevance. Model-based systems such as TEAMS work very well for detecting and
diagnosing the known failures that have been modeled. As we mentioned in the Introduction. we believe that the
value of including a one-class anomaly detection algorithm such as IMS alongside a model-based diagnosis system
such as TEAMS in a diagnostic system is that the anomaly detection system has the potential to detect anomalies
that cannot be detected by the model-based diagnosis system, either because they are unknown failures and therefore
wimodeled, or because they are not failures. Furthermore; IMS may detect known failures in advance of the time
that TEAMS would detect them, and in general IMS requires less modeling effort than TEAMS (although it does
require a sufficient quantity of historical and/or simulated training data). But anomaly detection methods such as
IMS are not well suited for detecting some types of failures. As we mentioned in the IMS section, we used
simulations of known failure modes to test IMS. For some of these simulated failures, we expended a lot of effort in
tuning IMS to get IMS to detect the simulated failures.' This tuning process included reducing the set of
measurements that were used to train IMS.

With IMS, we know that its strengths lie in a great potential to detect faults that are unknown or that otherwise
have not been modeled and to detect anomalies that are precursors of faults before a model-based system detects the
fault. We believe that it would be better to rely on TEAMS to detect certain known failure modes, rather than tuning
IMS to detect them. Reducing the set of measurements that are used to train IMS did allow IMS to successfully
detect the simulated failures, but it reduced IMS' potential to detect other unknown failures.

F. Metrics
We had a lot of discussions about the appropriate metrics for measuring the accuracy of diagnosis and anomaly

detection. We considered different ways of defining false positives and false negatives in both cases. We ended up
using the Area under the ROC curve (AUC) to measure the performance of IMS and enumerating the false alarms to
assess the performance of TEAMS. Any future operational deployment of diagnostic technology will require careful
consideration of metrics.

X. Conclusion
Automated pre-launch diagnostics can help increase safety, reduce cost, and reduce launch delays. The Ares I-X

Ground Diagnostic Prototype helped to demonstrate and mature automated fault detection and diagnostic software
that can be used in future missions. GDP successfully demonstrated the feasibility of integrating three very different
fault detection and diagnostic methods, and of integrating diagnosis of the vehicle with diagnosis of the ground
systems.
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Although the prototype had a small number of false alarms in TEAMS, we believe that an operational system
could have avoided these false alarms by having mode identification provided by the system, and by having a formal
verification and validation process. As an anomaly detection system, IMS can be expected to have some false alarms
(since not all anomalies are failures), but we expect that the number of false alarms will decrease over time as more
data becomes available for training IMS.
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